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Probability distribution of the sizes of the largest erased loops in loop-erased random walks
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We have studied the probability distribution of the perimeter and the area of thekth largest erased loop in
loop-erased random walks in two dimensions fork51 to 3. For a random walk ofN steps, for largeN, the
average value of thekth largest perimeter and area scales asN5/8 and N, respectively. The behavior of the
scaled distribution functions is determined for very large and very small arguments. We have used exact
enumeration forN<20 to determine the probability that no loop of size greater thanl is erased. We show that
correlations between loops have to be taken into account to describe the average size of thekth largest erased
loops. We propose a one-dimensional Levy walk model that takes care of these correlations. The simulations
of this simpler model compare very well with the simulations of the original problem.
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I. INTRODUCTION

The statistics of extremes of many correlated rand
variables is relevant in many different physical contexts,
example, in the study of earthquakes@1#, weather records@2#,
slow relaxation in glassy systems@3#, and persistence in ran
dom walks @4#. In the sandpile model of Bak, Tang, an
Wiesenfeld @5#, understanding the scaling properties
‘‘big’’ avalanches is an important unresolved question@6#.
The theory of extremals of manyindependent identically dis
tributed random variables is a well-studied subject in pro
ability theory, and it is known that the distribution of extr
mals converges to one of the three Gumbel distributi
@7,8#. It is not known how these results are modified wh
the variables have a long-ranged power-law correlation
some special cases extremal statistics of strongly correl
variables can be determined exactly@9#. In general, however
the study of extremal distributions of correlated and stron
correlated random variables poses a rather nontrivial p
lem even in the simplest cases.

This paper deals with the extremal statistics of variab
with long-range power-law correlations in the loop-eras
random walks~LERW’s! in two dimensions. Our interest in
the LERW problem comes from the fact that it provides o
of the simplest examples of self-organized critical syste
In the LERW problem, the length of the walk is first in
creased by one at each step, and then decreases by a ra
amount due to possible loop erasures. The probability dis
bution of sizes of erased loops has a power-law tail@10#.
This is, thus, similar to the sandpile model where one grai
added at each time step but the distribution of number
grains leaving the pile has a power-law tail. Clearly, there
correlations in the sizes of erased loops at different tim
These correlations are more pronounced for larger loo
Erasure of a large loop leads to significant decrease in
length of the erased walk, and hence a significant decrea
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the probability of erasure of another large loop within a sh
time.

These correlations are better described in terms of
probability distribution of the size of the largest~or second
largest, third largest, etc.! of erased loops inn consecutive
steps, rather than by the usual time-dependent two-point
relation function, which gives only a very small weight
large events. In this paper we shall deal only with the c
when one looks at thekth rank loop of all the loops erase
amongst the firstN steps. We propose that the expected rat
of sizes ofkth largest loop with the largest loop is a goo
variable to quantify these strong correlations, and propos
one-dimensional Levy walk model that is then tested
simulations.

The LERW problem was introduced by Lawler@11# as a
more tractable variant of the self-avoiding walk proble
This problem is related to many well-studied problems
statistical physics: the classical graph-theoretical problem
spanning trees, theq-state Potts model in the limitq→0
@12#, and the Laplacian self-avoiding walk problem@13#.
Connection to the spanning trees also relates this problem
the abelian sandpile model of self-organized criticality@14#.
Recently simulation of LERW has been used as a comp
tionally efficient way to determine the dynamical expone
of the Abelian sandpile model in three dimensions@15#. The
upper critical dimension of LERW’s is known to be 4@16#.
In two dimensions, the fractal dimension of LERW’s
known to be 5/4@12,17,18#, and the exponent characterizin
the probability distribution of the area of erased loops
known to be superuniversal@15#. Several other results on
LERW’s can be found in@10,19–21# and a good review of
earlier results on the LERW problem can be found in@16#.

We shall denote byl i the perimeter of the loop erased
the i th step of the walk, and byl N

(k) the kth largest value
among the erased loops$l i%,i 51 to N. In this paper, we
show that the asymptotic behavior of the probability dist
bution function Prob(l N

(k)5l ) is described by ak-dependent
scaling function with argumentl /Nz/2. Thus the scaling vari-
able is the same as would be expected for a Gumbel di
bution of extremal ofN variables having a probability distri
bution with a power-law tail. However, the variables in o

s,
l.
©2002 The American Physical Society08-1
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HIMANSHU AGRAWAL AND DEEPAK DHAR PHYSICAL REVIEW E 65 031108
problem are not identically distributed, as the typical size
erased loops increases with time. The resulting distributio
also not of Gumbel type, and the limiting distribution is n
longer universal, and depends on the way distribution ofl i
scales withi. We determine the behavior of the scaling fun
tion for the largest loop for very large and very small valu
of its argument. A similar behavior is found for the loop
ranked by the enclosed area, rather than by their perime

The probability that there is no erased loop of leng
greater than a fixed valuer varies exponentially withN for
largeN. Enumerating all walks satisfying this property~for a
fixed r ) is a generalization of the self-avoiding walk pro
lem. We have used exact enumeration techniques to d
mine the behavior of this probability forr 50,2, and 4 by
enumerating all random walks withN<20. We have pro-
posed a simple Levy walk model that captures the corr
tions in the LERW and agrees well with its extremal statist
as determined from large-scale Monte Carlo simulations

The plan of this paper is as follows. In Sec. II, after d
fining the LERW model precisely, we recall the releva
points from the scaling theory for distribution of sizes
erased loops. These are used to get the scaling form fo
probability distribution of the perimeter and the area of la
est erased loop in a walk ofN steps. In Sec. III, we outline
our results about the connectivity constantsm2 andm4 ~defi-
nition follows in Sec. III! and estimate their numerical valu
using the exact enumeration technique. The simulation te
nique and results obtained thereof are described in Sec. I
Sec. V, we describe the Levy walk model and compare
results of numerical simulations of this model with that
the LERW. Finally, some concluding remarks follow
Sec. VI.

II. SCALING THEORY OF LOOP-SIZE DISTRIBUTIONS

A loop-erased random walk is defined recursively as f
lows. For a one step random walk, the corresponding lo
erased random walk is the same as the random walk. To f
the LERWL8 corresponding to a given random walk of (N
11) steps, we first form the LERWL corresponding to the
first N steps of the random walk. Let us say this LERWL has
n steps. We now add the (N11)th step of the random walk
to L. If no loop is formed, the resulting (n11)-stepped walk
is L8. If this results in forming a loop of perimeterl , this
loop is erased, and the resulting (n112l )-stepped walk is
L8. A simple example is depicted in Fig. 1.

Let L be a LERW ofn steps obtained from a random wa
of N steps. For a fixedN, n is a random variable. The critica
exponentz of the LERW is defined by the relation that

^n&;Nz/2 ~1!

for largeN, where the angular brackets denote ensemble
eraging over all random walks ofN steps. Since the root
mean-square end-to-end distanceR for LERW’s is the same
as that for random walks, we haveR;N1/2, and ^n&;Rz.
Thus,z is the fractal dimension of the LERW.
03110
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Let Prob(l i.l ) be the cumulative probability that th
perimeterl i of the loop erased at thei th step of the LERW
is greater thanl . We define

F~ l !5 lim
i→`

Prob~ l i.l !. ~2!

It was shown in@15# that for largei @l @1, Prob(l i.l )
satisfies the scaling form

Prob~ l i.l !;l 22/zf ~ l / i z/2!. ~3!

The scaling functionf (x) tends to a nonzero constant asx
tends to zero, and decreases to zero exponentially fast fx
@1. Note that the exponents appearing in this scaling fo
depend only on the fractal dimensionz. Note also that the
distribution of l i broadens asi increases, and thus the var
ablesl i are not identically distributed random variables.

Let F(l N
(1)<l ) be the cumulative probability thatl N

(1)

will be less than or equal tol . We shall study the behavio
of this function for largeN. The probability that the erase
loop at thekth step of the LERW has perimeter less than
equal tol is given by 12Prob(l k.l ). A simple approxi-
mate formula forF(l N

(1)<l ) is obtained by neglecting cor
relations among sizes of erased loops, and treating the
eration of loops at different time steps as independent eve
In the following, we will denote byFuc the value of
F(l N

(1)<l ) in this uncorrelated approximation. This give

F~ l N
(1)<l !.Fuc~ l N

(1)<l !5)
k51

N

@12Prob~ l k.l !#.

~4!

FIG. 1. An illustrative example of the loop-erasure procedu
and some aspects related to perimeter and enclosed area of e
loops in loop-erased random walks. The random walka-b-c-d-i-b-
e-f-e-g-h-g-i-j -k-l of 52 steps starts ata, and ends atl. The erased
loops are shown by thin lines and the loop-erased walka-b-i-j -k-l
having 12 steps is shown by thick lines with sites on it marked
solid circles. Note that at the pointsi andk, while the random walk
path intersects itself, the LERW encounters no intersection as
loop b-c-k-d-i-b has already been erased.
8-2
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PROBABILITY DISTRIBUTION OF THE SIZES OF . . . PHYSICAL REVIEW E 65 031108
Let x5l /Nz/2, xN
(1)5l N

(1)/Nz/2, and y5k/N be the new
scaling variables. In terms of these new variables, subs
tion of Prob(l k.l ) from Eq. ~3! in Eq. ~4!, gives

Fuc~xN
(1)<x!5)

y
F12

1

N
x22/zf S x

yz/2D G . ~5!

For fixedx and largeN, we can evaluate this expressio
by taking logs, expanding in powers of (1/N), and keeping
only the lowest order terms in (1/N). With this we get

ln Fuc~xN
(1)<x!52x22/zf̃ ~x!, ~6!

where f̃ (x)5*0
1f (x/yz/2)dy. It is easy to see thatf̃ (x) has

the same qualitative behavior asf (x). In terms of Prob(l k
.l ), this equation can be written as

Fuc~ l N
(1)<l !.exp@2NF̃~ l ,N!#, ~7!

where

F̃~ l ,N!5
1

N (
k51

N

Prob~ l k.l !. ~8!

For smallx, ln Fuc(xN
(1)<x) should vary as2x22/z. For large

x, f̃ (x) is small, and 12Fuc(xN
(1)<x) should vary as

x22/zf̃ (x).
Equation~7! is a good approximation to Eq.~4! so long as

the higher order terms in (1/N) can be neglected. It is easil
seen that the neglected term is of orderNF̃2(l ,N), and
hence the approximation is valid so long asl @Nz/4. It will
be seen from simulation results~see Sec. IV! that our as-
sumption about correlations being small is not too bad
that Eq.~4!, and consequently also Eqs.~6! and~7!, are rea-
sonable approximations to the largest erased-loop size d
bution for all l . The deviation of the correct value from E
~4! is largest ifl is very small, say equal to 0,2,4, . . . . It is
important to understand the behavior ofF(l N

(1)<l ) in this
case. This we do in the following section.

III. DETERMINATION OF CONNECTIVITY CONSTANTS

Let Cr(N) be the number ofN-step random walks in
which no loop of sizegreater than ris formed. The caser
50 corresponds to self-avoiding walks. As the total num
of random walks ofN steps is 4N on square lattice, we hav

F~ l N
(1)<r !5

Cr~N!

4N
. ~9!

For largeN it is expected that@22#

Cr~N!;m r
N . ~10!

For large N,m r tends to a constant independent ofN,
which may be called ther th connectivity constant. We also
have the trivial inequalitym r,m r 12 for all r. As r tends to
infinity, m r tends to 4. From Jensen and Guttmann@23# the
03110
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value ofm0 is known very precisely and we have estimat
m2 and m4 using series expansion and exact enumera
~details follow!.

We determined the numbersCr(N) for N<20 and for all
r by exact enumeration. The enumeration results forr 52
and 4 are tabulated in Table I. We analyzed this data
fitting it to the extrapolation form

Cr~N!5K0m r
N~N!Ng21F11

K1

N
1

~21!N

Ng11/2 H K21
K3

N J G ,

~11!

where the critical exponentg is expected to be independe
of r and takes the self-avoiding walk value of 43/32 in tw
dimensions@22# andKi are constants that depend onr. This
form is similar to that used by Conway and Guttmann@22#
for analyzing 51-term series of self-avoiding walks. We ha
reduced the number of parameters in Eq.~11! because our
series is shorter. Our estimates ofm2 andm4, by fitting the
form given by Eq.~11! term by term to the 20-term serie
tabulated in Table I, are 3.7083(2) and 3.8818(4), respec-
tively. These values are not very sensitive to variation in
fitting values of the parametersKi .

It is interesting to compare the numerical values ofm0 ,
m2, and m4 with the estimates obtained using the uncor
lated approximation. From Eqs.~9! and ~10! we see that
F(l N

(1)<l ) varies as (m l /4)N for largeN. Thus the approxi-
mation Eq.~7! givesmk/4'12F(k). Using the values ofmk
determined above, this would imply thatF(0), F(2), and

TABLE I. Number ofN-step loop-erased random walksCl (N)
in which the largest loop of perimeterl less than or equal to 2 an
4 are erased forN51, . . . ,20.

N C2(N) C4(N)

1 4 4
2 16 16
3 64 64
4 248 256
5 976 1024
6 3736 4072
7 14 536 16 248
8 55 280 64 352
9 213 336 256 120
10 808 016 1 011 504
11 3 099 456 4 016 496
12 11 706 568 15 828 968
13 44 696 992 62 727 520
14 168 475 176 246 805 224
15 640 913 784 976 340 664
16 2 411 998 168 3 836 482 296
17 9 148 925 856 15 153 764 480
18 34 387 933 200 59 482 843 856
19 130 125 970 320 234 640 138 528
20 488 603 502 672 920 216 177 360
8-3
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HIMANSHU AGRAWAL AND DEEPAK DHAR PHYSICAL REVIEW E 65 031108
F(4) have the values 0.3404, 0.0729, and 0.0295, res
tively. The values of these quantities obtained from simu
tions are 0.3125, 0.0625, and 0.0257, respectively. We
that the approximation fares rather well in relating the pro
erties of the self-avoiding walks and loop-erased wal
which have quite different large-scale properties.

IV. COMPUTER SIMULATION RESULTS

We generated two-dimensional loop-erased random w
using the algorithm outlined in@15#. For each walk we col-
lected statistics about the perimeter and the area of the er
loop at each step. The statistics were collected forN-step
walks with N52r ,r 515, . . . ,20. Weaveraged over 4.7
3105 different realizations of the random walk. We we
able to simulate the entire ensemble in about 93 h o
Pentium-III 700-MHz machine using about 2.6-Mb RAM.

A. Largest loop perimeter

During the simulations we collected statistics forF̃(l ,N),
the average number of loops of perimeterl formed from a
random walk ofN steps. For each walk we also determin
the perimeter and area of the five largest loops formed. T
is used to obtain the measured cumulative distribut
Fo(l N

(k)<l ), of size of loops of rankk, with k51 to 5. The
subscript ‘‘o’’ here refers to ‘‘observed.’’ To reduce nois
nearbyl values were binned together. We used 30 bins
decade of data.

In Fig. 2 we have shown the plot for Probo(l N
(k)5l ) ver-

susl the observed probability distributions fork51, 2, and
3 for N5220. In Fig. 3 we have plottedFo(l N

(k)<l ) versus
l /Nz/2 for various values ofN as found in the simulations
and compared it to the theoretical curve given by Eq.~14!
ignoring correlations between loops. An excellent collaps
seen among curves for all the values ofN when plotted
against the scaling variablex5l /Nz/2. From these figures i
is clearly seen that forx.1 the prediction of the uncorre
lated theory is quite good and indeed asymptotically ex

FIG. 2. The observed probability distributions for the perime
of the kth largest erased loop,k51,2, and 3, for two-dimensiona
LERW for N5220.
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However, considerable departure is seen for smaller va
of x, for x!1.

From Fig. 3 it is clearly seen that the prediction of th
cumulative distribution function by the uncorrelated theory
consistently higher compared to the observed distribut
throughout the range of variation of the scaling variablex.
This shows the expected anticorrelation between occurre
of large loops.

For small values of the scaling parameterx, the observed
cumulative distribution function seems to behave as

Fo~xN
(1)<x!;a exp~2bx22/z!, ~12!

with a52.260.3 andb50.3960.02. The fit is shown in Fig.
4. For largex,12Fo(x

(1)<x) is very nearlyNF̃(l ,N) that
varies as

12Fo~xN
(1)<x!;a exp~2bx2/z!, ~13!

with the numerical value of the parameters obtained by cu
fitting being a50.3260.03 andb51.760.1, same as tha
obtained by analysis of the all-loops data. This fit is shown
Fig. 5. Notice that both Eqs.~12! and ~13! are generally of
the form of Gumbel distribution of type II and III@7#. If the
scaling function were a Gumbel distribution, Eq.~12! would
have held exactly for allx.

B. Largest loop area

During simulations we collected statistics for the area
the erased loops also. LetAi be the area of the loop erased
the i th step, andAN

(k) be thekth largest area amongst the fir
N erased loops. The statistics for these were obtained exa
as detailed for the perimeter data in the preceding sectio

r FIG. 3. The cumulative probability distribution for the perimet
of thekth largest erased loop,k51, 2, and 3, for different values o
N for two-dimensional LERW. Solid lines give the prediction of th
uncorrelated theory and dashed lines with symbols give the num
cally observed distributions. Forl /Nz/2.1 the curves match wel
with F(l N

(k)<l ) approaching unity very fast. Note the excelle
collapse of the lines of the same type for all values ofN andk and
also the systematic deviation~over prediction! of the uncorrelated
theory from the numerically observed distribution.
8-4



ol

d
fo
ee
-
a
en
. A

b

n

u-

var-
k
ns

han
e

e
ak

ter
f
ps,
lar
the

r

e
s

r

e
e

of

e
eri-

l
nt

PROBABILITY DISTRIBUTION OF THE SIZES OF . . . PHYSICAL REVIEW E 65 031108
In Fig. 6 we have shown the plots forFo(AN
(k)<A) versus

A/N for various values ofN, for k51 to 3. The format of
presentation is identical to that of Fig. 3. An excellent c
lapse is seen among the curves for various values ofN when
plotted against the scaling variabley5A/N.

The departure between the observed behavior and pre
tion of the uncorrelated theory is also similar to that seen
the perimeter data in the preceding section. It is clearly s
from this figure that fory.0.1 the prediction of the uncor
related theory is quite good and seems to be asymptotic
exact for largey. For y,0.1 considerable departure is se
between observed behavior and uncorrelated prediction
in the perimeter data, there is a systematic overprediction
the uncorrelated theory.

For small values of the scaling parametery, the observed
cumulative distribution functionFo(y(1)<y) seems to be-

FIG. 4. Variation of the cumulative probability distribution fo
the perimeter of the largest erased loop for smalll for different
values ofN for two-dimensional LERW. The solid line gives th
curve fit corresponding to Eq.~12! and dashed lines with symbol
give the numerically observed distributions.

FIG. 5. Variation of the cumulative probability distribution fo
the perimeter of the largest erased loop for largel for different
values ofN for two-dimensional LERW. The solid line gives curv
fit corresponding to Eq.~13! and dashed lines with symbols give th
numerically observed distributions.
03110
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have as exp(2a/y) with a50.04960.002. For largey,1
2Fo(y(1)<y) varies as exp(2by) with b51461.

C. Variation of loop sizes with rank

It is clearly seen in Fig. 2 that the probability distributio
of l N

(k) becomes sharper ask increases. In fact, ifk is of
orderN ~sayk5N/1000), it is easy to see that the distrib
tion tends to ad function for largeN. A more careful argu-
ment shows that ifk@Nz/(z11), then the distribution would
tend to ad function. We note thatl N

(k) varies as (N/k)z/2 and
the average number of erased loops with this perimeter
ies asN/(l N

(k))112/z. For the distribution to have sharp pea
at l N

(k) , this number should be much greater than fluctuatio
in the expected number of loops with perimeter greater t
l N

(k) . The latter varies ask1/2. Simple algebra then gives th
required result.

A similar argument for the probability distribution of th
areaAN

(k) of erased loops shows that the position of the pe
for thekth rank varies roughly asN/k and their width varies
as N/k3/2. Furthermore, whenk@N2/3 the width of the dis-
tribution becomes exponentially small inN.

D. Affect of correlations on the probability distribution
functions for the kth largest erased-loop size

Let m be the expected number of loops of perime
greater than or equalto l generated from a random walk o
N steps. If there are no correlations between different loo
for m!N, the number of such loops generated in particu
realization is a random variable, distributed according to
Poisson distribution. The probability that exactlyk such
loops are generated ise2mmk/k!. This implies that the prob-
ability that less thank loops of size greater thanl are gen-

FIG. 6. The cumulative probability distribution for the area
thekth largest erased loop,k51, 2, and 3, for different values ofN
for two-dimensional LERW. Solid lines give the prediction of th
uncorrelated theory and dashed lines with symbols give the num
cally observed distributions. ForA/N.0.1 the curves match wel
with F(AN

(k)<A) approaching unity very fast. Note the excelle
collapse of the lines of the same type for all values ofN andk and
also the systematic deviation~over prediction! of the uncorrelated
theory from the numerically observed distribution.
8-5
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HIMANSHU AGRAWAL AND DEEPAK DHAR PHYSICAL REVIEW E 65 031108
erated can be expressed in terms of the probability thano
loop of size greater thanl is generated, and this functiona
form is independent of the functionF(l ). Simple algebra
gives

Fuc~ l N
(k)<l !5exp~2m!(

i 50

k21
mi

i !
, ~14!

where

m52 ln@Fuc~ l N
(1)<l !#. ~15!

In Fig. 7, we have plottedF(l N
(2)<l ) andF(l N

(3)<l )
versusF(l N

(1)<l ) for N5220 from the observed distribu
tions. This is compared with what would be expected on
basis of uncorrelated approximation. Similar plots using a
~instead of perimeter! data show similar trends, and are om
ted here. From this figure, it is clearly seen that the predic
and the observed distributions are quite close. The ac
curve always lies above the value calculated by neglec
anticorrelations present.

A better quantitative estimate can be obtained by comp
ing the ratioRk , defined as

Rk5kz/2^l N
(k)&/^l N

(1)&, ~16!

where^ & denotes expectation value. The factorkz/2 has been
included so that the value ofRk would be 1 for allk, if the
variables were independent.

The value ofRk as found in the simulations of the LERW
was found to be 0.935, 0.922, 0.918, and 0.916 fork52 to 5,
respectively. The deviation from 1 provides a conveni
measure of the strength of correlations in the largest eve

FIG. 7. Variation of the cumulative probability distribution fo
the perimeter of thekth largest erased loop,k52 and 3, with that of
the largest erased loop for two-dimensional LERW. Dashed li
give the prediction by uncorrelated theory and solid lines give
behavior of the observed data. Here the curves are shown onl
N5220. Curves for other values ofN52r , r 517,18,19, collapse
indistinguishably with these curves.
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This could be useful in investigations of other models
self-organized criticality such as the sandpile or earthqu
models.

V. MODELING CORRELATIONS

Consider the time series$ni% with i 51,2, . . . ,generated
in a LERW simulation, whereni is number of steps in the
LERW at time stepi. This process can be modeled by
stochastic motion of point on a one-dimensional lattice.
ni is always positive, the motion occurs in the half spacex
>0. In a single time step, this point can move one step to
right ~if no loop erasure occurs in the corresponding rand
walk!, or several spaces to the left. Now suppose that
random walk is not accessible to observation, and only
time series$ni% is observed. While the original LERW
treated as a stochastic process is a Markov process, the
jected process is clearlynot Markovian. However, it may be
approximated as a Markov process.

A. One-dimensional Levy walk model

The transition probabilities for this Markov process a
easily defined. We think ofni as the position of a random
walker at timei on a one-dimensional lattice. The walk b
gins at t50 with the walker positioned atx50. At each
subsequent time step, the walker takes one step to the
and then draws a non-negative integer random numbel
with the probability Prob(l ),l 50,1,2, . . . . Wewill assume
that for largel , Prob(l ) decreases asl 2t with t.1. If l
is less than or equal to the current positionx of the walker,
the walker takesl steps to the left; otherwise it stays pu
This completes one step. Clearly, we have

(
l 50

`

Prob~ l !51. ~17!

To ensure that there is no overall drift in the model, we a
assume that

(
l 50

`

l Prob~ l !51. ~18!

Note that thel here corresponds to the erased-loop s
in LERW’s. In general, one can expect to improve compa
son with the original LERW model by making the probab
ity of backwardl steps when the walker is atn equal to the
conditional probability in the LERW problem that the ne
step leads to erasure of a loop of lengthl when the current
length of walk isn. This is expected to be of the form

Prob~ l un!5Prob~ l u`! f cutoff~ l /n!, ~19!

where f cutoff is a cutoff function that is strictly zero if its
argument is greater than 1. We make the simple choice
f cutoff is 1 if the argument is less than 1.
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For our simulations, we made a particular choice
Prob(l ). We assumed that it is given by

Prob~ l !55
1

l F 1

l a
2

1

~ l 11!aG , for 1<l <`

12 (
k51

`

Prob~k!, for l 50.

~20!

This particular choice ensures that Prob(l ) varies as
l 222a for large l , and that the no-drift condition given b
Eq. ~18! is automatically guaranteed for any choice ofa.
Furthermore, one can generate this distribution numeric
by using only two calls to the random number generator.
take a random numberu with uniform distribution between
@0,1#, definem5 bu21/ac, and then putl 5m with probabil-
ity 1/m and l 50 with probability 121/m. In our simula-
tions, we useda50.6, which corresponds to the valuet
52.6 of the exponent of the two-dimensional LERW
Other choices of Prob(l ) having the same value oft and
satisfying Eqs.~17! and~18! would be expected to give simi
lar results.

The master equation for the above process describing
evolution of the probabilityP(x,t) of the walker being at
positionx at time t is written as

P~x,t11!5 (
l 50

`

Prob~ l !P~x211l ,t !. ~21!

For large timest, the width of the probability distribution
P(x,t) increases to infinity. It is easy to see that the wid
must increase ast1/(11a). We note that if the particle it atx,
its expected displacement in the next time step is positive
jumps with displacement greater thanx to the left are disal-
lowed. The contribution of such terms to Eq.~17! varies as
x22t. This equation may schematically be written in the fo

]P

]t
;

]

]x
~Px22t!1DP, ~22!

where D denotes diffusion operator that, presumably,
volves fractional derivatives@24#. The resulting equation fo
the scaling function is nonlocal, and its analytical soluti
seems difficult. Simple dimensional analysis shows that
scales asxt21. Hence the width of this distribution shoul
scale ast1/(t21). Furthermore, for larget,P(x,t) tends to the
scaling form

P~x,t !.
1

t1/(t21)
pS x

t1/(t21)D . ~23!

B. Results from the Levy walk model

We numerically integrated the master equation Eq.~21! in
x>0 half space using the probability distribution for erase
loop sizes given by Eq.~20! and computedP(x,t). The in-
tegration for walks having up toN5217 steps required abou
80 h of CPU time on a Pentium II 350-MHz machine usi
03110
f

ly
e

he

as

-

-

about 7-Mb RAM. We also simulated the Levy walk proce
for time steps up toN5220 for obtaining the statistics on
erased-loop sizes and thekth largest erased-loop size. Th
quantities were sampled along the same lines as for
LERW’s discussed in Sec. IV. To reduce noise in the sta
tics, we averaged over a large ensemble consisting o
3105 different runs. The simulation of the entire ensemb
required about 141 h of CPU time on a Pentium II 350-MH
machine using about 1.5-Mb RAM.

Scaling plots for the computed probability of finding th
Levy walker at locationx at time stepN,P(x,N), are shown
in Fig. 8. In this figures we have plottedNz/2P(x,N) versus
x/Nz/2, for z55/4. The figure clearly shows that the observ
behavior agrees well with the conjectured scaling form giv
by Eq. ~23!.

FIG. 9. Observed probability distributions for size~perimeter for
LERW! of the kth largest erased loop for two-dimensional LER
~solid lines! and the Levy walk model~dashed lines! for N5220.
The extremal distributions for the Levy walk model have been r
caled by multiplying~dividing! the abscissa~ordinate! by a factor of
1.04. This rescaling makes the mean points of the distributions
tained from the Levy walk model coincide with those of the LERW

FIG. 8. Scaling plots from numerical integration of the mas
equation Eq.~21! for the probability of finding the Levy walker a
positionx at time stepN versusx/Nz/2, z55/4, for N5216 and 217.
Good scaling and consequently good collapse of curves are se
8-7
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We also analyzed the distribution ofkth largest loop sizes
in simulation of this Levy walk model, and compared the
with the corresponding distributions for the two-dimension
LERW model. We found that the deviations from the pred
tions of the uncorrelated theory are much smaller in the c
of the Levy walk model than in the original LERW. The plo
are very similar to the Figs. 2, 3, and 7, and are being om
ted here.

In Fig. 9, we have compared the probability distributio
for the kth largest erased-loop sizes from the Levy wa
model with those from LERW. The figure clearly shows th
the probability distributions obtained from the Levy wa
model match very well with those from the LERW.

The value ofRk for k52 to 5 as determined from th
simulation of the Levy walk model were 0.947, 0.940, 0.94
and 0.946, respectively. These are comparable to the va
for the actual LERW model, and shows that the Levy wa
model takes much of the correlations of the LERW probl
into account. A better choice of the cutoff function wou
have yielded even better agreement.
eo
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VI. CONCLUDING REMARKS

Our analysis above shows that the probability distribut
of the largest erased loops in LERW’s is fairly well describ
by the simple approximation ignoring correlations betwe
the sizes of different loops. However, the average value
ratios ofl N

(k) are not well described in this approximation.
simple model that takes care of a large part of these corr
tions is the Levy walk model introduced in this paper. In th
model, one keeps information about thelengthof the LERW,
but throws out all information about its shape. We have s
that this model reproduces the extremal statistics of
LERW’s quite well.

Second, we have exactly enumeratedCr(N) the number
of N-step LERW’s in which loops of sizeless than or equal
to r are erased. Using these we have determinedm r the r th
connectivity constant. The determination ofm0 for various
lattices has been a long-standing problem in lattice statis
Higher r values present interesting geometrical questio
and may be helpful in understanding the crossover from r
dom walk to self-avoiding walk.
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